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The newly developed simulation method known as Stokesian dynamics is used to 
investigate the rheological behaviour of concentrated suspensions. Both the detailed 
microstructure (e.g. pair-distribution function) and the macroscopic properties are 
aetermined for a suspension of identical rigid spherical particles in a simple shear flow. 
The suspended particles interact through both hydrodynamic and non-hydrodynamic 
forces. For suspensions with purely hydrodynamic forces, the increase in the 
suspension viscosity with volume fraction 4 is shown to be caused by particle 
clustering. The cluster formation results from the lubrication forces, and the 
simulations of a monolayer of spheres show a scaling law for the cluster size: 
1, N [ l -  (@/&,)i]-l, where & is the maximum volume fraction that can shear 
homogeneously. The simulation results suggest that the suspension viscosity becomes 
infinite at the percolation-like threshold & owing to the formation of an infinite 
cluster. The predicted simulation viscosities are in very good agreement with experi- 
ment. A suspension with short-range repulsive interparticle forces is also studied, 
and is seen to have a non-Newtonian rheology . Normal-stress differences arise 
owing to the anisotropic local structure created by the interparticle forces. The 
repulsive forces also reduce particle clustering, and as a result the suspension is 
shear-thickening. 

1. Introduction 
Particles suspended in a fluid medium occur throughout nature and industry and 

exhibit a remarkable variety of rheological properties. Almost every form of 
non-Newtonian behaviour - shear thinning and thickening, yield stresses, normal- 
stress differences, etc. - has been observed (Bagnold 1954; Krieger 1972; Jeffrey & 
Acrivos 1976 ; Gadala-Maria 1979 ; Russel 1980 ; Piitzold 1980 ; Gadala-Maria & 
Acrivos 1980). Even a discontinuous viscosity-shear-rate dependence has been 
reported (Hoffman 1972). The rheological properties of suspensions depend on many 
factors, of which particle concentration, hydrodynamic, colloidal and Brownian 
forces, and flow type (simple shear versus extensional flow) are clearly important. The 
dynamic interaction of these basic factors determines the suspension microstructure, 
from which the macroscopic rheological properties follow. 

Predicting the rheological behaviour of suspensions has been a long-standing 
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challenge in continuum and statistical mechanics. Theoretical determination of the 
macroscopic properties originated with the work of Einstein (1906) on the effective 
viscosity of a dilute suspension of rigid spheres at zero particle Reynolds number. 
Einstein’s celebrated formula for the relative viscosity (the effective viscosity of the 
suspension divided by the viscosity of the suspending fluid) 

Tr= I + %  ( 1 )  

where # is the volume fraction of particles, gives the first effect of the particles on 
the suspension viscosity. 

There has been considerable work extending Einstein’s formula to second order in 
volume fraction, thereby bringing in the effects of particle interactions. Corrections 
to (1) determined by Peterson & Fixman (1963), Batchelor & Green (19723) and others 
take the form 

where the coefficient K depends on the hydrodynamic interaction between two 
particles and on the pair-distribution function, i.e. on the suspension microstructure. 
The analyses of Einstein and Batchelor & Green have been extended in several ways : 
to non-spherical particles, to include colloidal forces and to include Brownian motion. 
The review articles by Batchelor (1974), Brenner (1974), Jeffrey & Acrivos (1976) and 
Russel (1980) summarize much of this work. These theoretical studies of dilute 
systems have elucidated the fundamental mechanisms operating in suspensions, and 
provide an important foundation upon which to base further studies. Unfortunately, 
however, the relative viscosities predicted by (2) agree with experiment only up to 
volume fractions of the order of 15-20 %. 

Extending the dilute-suspension studies to higher concentrations poses two 
difficult problems: (1)  computing the many-body hydrodynamic interactions, and (2) 
determining the configuration of the microstructure. These problems are so severe 
that the only rigorous analyses of concentrated suspensions (i.e. above the two-particle 
limit) that have addressed both of these problems are for spatially periodic models 
(Adler, Zuzovsky & Brenner 1985; Nunan & Keller 1984). The periodicity allows the 
many-body interaction problem to be solved exactly on the unit cell, but the 
assumption of a perfectly regular microstructure is highly restrictive, and is at best 
only an approximation for a flowing suspension. (A periodic suspension does, 
however, accurately describe colloidal crystals and may provide a reasonable model 
for a concentrated suspension undergoing small-ampli tude oscillatory motion.) Even 
within this model, however, the predictions of Adler et al. and Nunan & Keller differ 
as to the asymptotic form of the relative viscosity at  close packing. 

Nunan & Keller, who compute the relative viscosity only for instantaneous, static 
lattice configurations, find that the viscosity diverges as 

as the volume fraction approaches the maximum #rn for that particular lattice. This 
singular behaviour is the same as that found by Frankel & Acrivos (1967) based on 
a lubrication-type argument. The fundamental assumption underlying their analysis 
is that at close packing the relative velocity between two particles remains finite as 
the particles are pushed together (or pulled apart) by the shear flow. Lubrication 
theory requires an infinite force to push surfaces together at finite velocity, and hence 
the singularity in (3). Frankel & Acrivos’ model is also static, containing no 
information on the dynamics of the microstructure, and does not offer any explanation 
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as to the origin of this infinite force. In  the spatially periodic case, the relative velocity 
must, of necessity, be finite at touching. 

At the same time, Adler et al., who treat the same spatially periodic case as Nunan 
& Keller, but consider the dynamics of the suspension by averaging in time over the 
many different lattices sampled by the steadily sheared suspension, show that the 
singularity (3) disappars on averaging. This very interesting result is explained as 
follows. Although the lubrication forces are singular as t-l, where 5 is the separation 
between the particle surfaces, the ‘area’ of closest contact is O ( t ) ,  and the resulting 
viscosity is thus O(1). Said differently, since the periodicity of the flow requires 
particles to translate with a constant relative velocity, the time spent at closest 
contact is only O ( t ) ,  and thus the contribution to the viscosity from this lubrication 
region is O(1). The essentially static analyses of Frankel & Acrivos and Nunan & 
Keller implicitly assume the time spent at close contact is O(1). Thus the supposed 
singular behaviour of the relative viscosity, which has been widely accepted by both 
experimentalists and theoreticians, depends fundamentally on the dynamics of the 
suspension microstructure, is absent for spatially periodic suspensions, and remains 
an unresolved question for non-periodic microstructures. 

Recently, Beenakker (1984) has developed a theory for suspension viscosity which 
includes formally the complete many-body hydrodynamic interactions. These inter- 
actions are determined in the form of infinite series of multiple reflections, and by 
a judicious ordering of the sphere-sphere reflections certain types of interactions may 
be summed. While formally correct, all interactions have not been summed and thus 
not included, and the microstructure is not determined ; a Percus-Yevich hard-sphere 
distribution is assumed. A further discussion of this theory and other approaches is 
given in § 3. 

There have of course been many other approaches, theories, correlations and ideas 
put forth to explain and predict the rheological behaviour of suspensions. Our purpose 
here is not to review the literature but rather to briefly summarize our present 
theoretical understanding and to point out those approaches we shall refer to later. 

In an effort to understand the behaviour of concentrated suspensions, we have 
recently developed a general method for numerically simulating the dynamics of 
many interacting particles in Stokes flow (Bossis & Brady 1984). This method, which 
we have named Stokesian dynamics, uses a molecular-dynamics-like approach to 
follow the time evolution of the positions of particles in suspension. Thus many-body 
effects are taken into account and the suspension microstructure evolves dynamically. 
The particles interact through both hydrodynamic and non-hydrodynamic forces, the 
latter of which may be almost any type of Brownian, colloidal, interparticle or 
external force. The key feature of the method is, however, the hydrodynamic 
interactions. The method is quite versatile, and has already offered new insights into 
suspension structure, such as an anisotropic local structure and, under certain 
circumstances, a transition to a highly ordered state at high concentrations, both of 
which are shear-induced. In this paper we report on the macroscopic rheological 
properties that can be determined from Stokesian-dynamics simulations. 

In  $2 we shall briefly summarize the salient features of the Stokesian-dynamics 
method; the details can be found in our earlier paper. We shall then show how to 
compute the rheological properties of suspensions by numerical simulation. With 
Stokesian dynamics the complete instantaneous and time-averaged bulk stress 
(Batchelor 1970) can be determined, from which both the effective viscosity and 
normal-stress differences can be computed. Specific calculations are carried out for 
a monolayer of identical rigid non-Brownian spheres in a simple shear flow. In a 
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monolayer (cf. figure 1) all particles lie in the same plane, the plane of shear. While 
an idealized model suspension, a monolayer is a realizable suspension flow, and 
experiments have been performed on such systems (Belzons et al. 1981 ; Bouillot et 
aE. 1982). A monolayer provides a convenient numerical setting because it minimizes 
the computation costs while preserving the essential physics in the plane of shear, 
i.e. it  is expected that the pair-distribution function in the plane of shear will not 
differ significantly from that in a fully three-dimensional suspension. 

In  $ 3  we present the effective viscosity and normal-stress differences for two types 
of suspensions. In the first, particles interact through purely hydrodynamic forces. 
In  this case the effective viscosity can be expressed solely as a function of the volume 
fraction. The normal-stress differences are statistically zero because the distribution 
of particles is symmetric in the plane of shear, a result, no doubt, of the reversibility 
of Stokes flow. It will be shown that the increase in the suspension viscosity with 
increasing density is due to two effects: (1) the change in microstructure, i.e. the 
distribution of particles, and (2) the increase in the relative velocity of two particles. 
It is the latter effect that gives rise to the rapid increase in the viscosity with 
concentration. We show that this increase in relative velocity can be interpreted in 
terms of an ‘effective’ shear rate due to particle clustering. Our numerical results 
suggest that the cluster size scales with the lubrication forces, as given by a formula 
similar to ( 3 ) ,  indicating that the suspension viscosity becomes infinite owing to the 
formation of an infinite cluster. In  this section we also compare our numerically 
determined suspension viscosities with experiment and with the recent theoretical 
calculations of Beenakker (1984). 

The second type of suspension investigated is one where, in addition to the 
hydrodynamic shear forces, the particles interact through repulsive DLVO-type 
colloidal forces. The viscosity now depends on three parameters: the volume fraction, 
the shear rate, i.e. the ratio of hydrodynamic to colloidal forces, and a parameter that 
characterizes the range (as opposed to amplitude) of the colloidal forces, which in our 
case is a non-dimensional Debye length. The non-hydrodynamic interparticle forces 
affect the bulk stress in two ways: (1) there is a direct ‘elastic’ contribution to the 
stress (cf. (10) below), and (2) the interparticle forces influence the particle trajectories, 
changing the microstructure. This suspension with short-range repulsive forces is 
shear-thickening due primarily to the change in microstructure with shear rate. 
Normal-stress differences are also present because the microstructure is locally 
anisotropic. 

2. Simulation method 
The details of the Stokesian-dynamics method can be found in Bossis & Brady 

(1984) ; here we only sketch the main points. In the absence of Brownian motion and 
at low particle Reynolds number, the equations of motion for N particles suspended 
in a Newtonian solvent undergoing a bulk linear shear flow may be written as 

-RU*+@:E+F, = 0. (4) 

In (4) U* is a vector of dimension 6 N  containing the translational-rotational 
velocities of the N particles relative to the bulk fluid’s translational-rotational 
velocity evaluated at  the particles’ centres Uo. The 6 N  x 6 N  grand resistance matrix 
R depends on the instantaneous configuration of all N particles and gives the 
forcetorque exerted by the fluid on the particles due to their motion relative to the 
fluid. The 6 N x 3 x 3  matrix 0 is also configuration-dependent and gives the 
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FIQTJRE I.  Schematic diagram of a sheared monolayer. All spheres 
are of the same radius and lie in the plane of shear. 

force-torque on the particles due to the bulk shear flow. For simple shear in the 
(2, y)-plane (cf. figure 1) the bulk rate-of-strain tensor E is given by 

where is the shear rate, and the bulk vorticity 51 is 

D = -s (0, 0, 1). (6)  

How the bulk quantities E and 51 relate to the mechanism causing the shear is 
discussed below. Fp stands for any non-hydrodynamic forces acting on the particles, 
such as interparticle colloidal forces or an external force such as gravity. 

In  linear shear flow where Y-l sets the timescale, the condition for the neglect of 
particle inertia is that the particle Reynolds number Re = pyu2/q be much less than 
unity. p is the suspending fluid’s density and q its viscosity. In  order to neglect 
Brownian motion, the particle PBclet number Pe = 67c7a3/kT must be large. Here k 
is Boltzmann’s constant, T is the absolute temperature and we have used the 
Stokes-Einstein relation for the particle diffusivity D = k T / 6 ~ 7 a ,  which overestimates 
the diffusivity in a suspension. There are many situations in which both conditions 
are satisfied ; e.g. spherical particles in excess of 5 pm in diameter in water at room 
temperature have PBclet numbers O(100) for shear rates 0(1 s-l), while the same 
particles have Reynolds numbers O( ). In  the simulations discussed here these 
conditions are assumed to be satisfied. 

While the evolution equation (4) is exact, approximations are needed for the grand 
and shear resistance matrices because the many-body hydrodynamic theories that 
have been advanced (Beenakker 1984; Beenakker & Mazur 1983; Mazur & van 
Saarloos 1982) are not yet in a form suitable for dynamic simulations. Thus the 
reaistance matrices R and are constructed by a pairwise superposition of the exact 
two-sphere results. Although it is desired to obtain the velocities U*, which reauires 
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inverting the resistance matrix to obtain the so-called mobility matrix R-l, it is 
necessary to add interactions painvise in R rather than in R-l. Pairwise additivity 
in R corresponds to a superposition of forces, while a pairwise additivity in R-l 
corresponds to a superposition of velocities. Pairwise interactions in R maintain the 
hydrodynamic lubrication forces that prevent particles from overlapping. In  the 
mobility matrix the lubrication forces are lost, and particles freely overlap unless 
there are strong repulsive interparticle forces. The exact two-sphere results for R and 

are given in Arp & Mason (1977), Jeffrey & Onishi (1984), Jeffrey (1984 personal 
communication) and Kim & Mifflin (1985). 

Pairwise additivity is of course an approximation, but one that has proved useful 
in molecular dynamics and that we hope to demonstrate is also useful, if not accurate, 
in Stokesian dynamics. In  dense suspensions the lubrication forces are the most 
important, and these are modelled correctly by the superposition of forces. Three-body 
and higher-order effects found from far-field expansions will fade in comparison with 
the lubrication forces as the separation distances become small. When three-body 
effects become important in concentrated systems, four-body and higher-order effects 
are also of the same order and would need to be included. In dilute suspensions most 
interactions are pairwise, and again painvise additivity should be accurate. Thus 
pairwise additivity in the resistance matrix seems to contain the essential physics. 
It should be noted, however, that inverting the resistance matrix to find the particle 
velocities involves more than what a strict pairwise additivity normally implies, and 
many-body interactions are actually taken into account. 

The many-body interactions included can be understood in the following way. Each 
particle in suspension acts as a series of multipoles whose strengths are unknown a 
priori and depend on the relative positions of all particles, as well as the bulk shear 
flow. The strengths of these multipoles are ultimately determined by the condition 
that the net force-torque on each particle is, in the absence of non-hydrodynamic 
forces, zero. In the resistance formulation the strengths of the multipoles on all 
particles are determined simultaneously by inverting R such that the net forcetorque 
on all particles in the N-body system is zero. The resulting particle velocities are such 
that this N-body force-torque requirement is satisfied. In the mobility formulation 
the net force-torque for each particle in a pair is zero, and the strengths of the 
multipoles and the velocities are determined from this two-body requirement only. 
The sum over all pairs then gives the resultant motion. 

The superposition of forces can also be viewed simply as one way in which to 
approximate the complex, configuration-dependent, matrix R. The remainder of the 
calculations proceed just as if we knew the exact N-body matrix. The method works 
because the approximation captures the correct physics at both large and small 
separations. The same cannot be said for the superposition of velocities in the mobility 
matrix. 

To model a suspension of ' infinite ' extent periodic boundary conditions are used. 
For the simple shear flow represented by (5) and (6) the periodic conditions in the 
x- and z-directions are straightforward, but periodicity in y requires a translation in 
x by an amount H?;t in order to preserve the bulk linear shear flow (Evans 1979; 
Bossis & Brady 1984). Here H is the periodic box height in the y-direction and t is 
time. By periodic boundary conditions the suspension is represented as a spatially 
periodic array of identical cells, and it can be proved (Adler et al. 1985) that the bulk 
rate of strain E and vorticity 51 are indeed well-defined macroscopic constants. Thus 
simple shear with periodic boundary conditions is well-posed and is intended to model 
t.he behaviour of a suspension far removed from the boundaries creating the flow. To 
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include boundary effects the formulation (4) cannot be used, because a bulk linear 
shear flow does not necessarily exist. As in all dynamic simulations the periodic cell 
must be sufficiently large so as not to affect the results. One measure that this 
requirement is satisfied is that the pair-distribution function approaches the bulk 
density, i.e. all structure is lost, before the edge of the periodic cell is reached. 

In  using periodic boundary conditions a particle interacts only with its nearest 
neighbours in the periodic cell; interactions with particles outside the cell are 
neglected. By using an argument based on the work of O'Brien (1979) i t  can be shown 
that, although the hydrodynamic interactions are long-ranged, falling off as r-2 for 
force-free particles, particles outside the periodic cell in total contribute zero to the 
translational-rotational velocity of the particle at the centre of its periodic cell with 
an error O ( E 2 ) ,  where R is a characteristic dimension of the cell. As the size of the 
periodic cell increases, the effect of the surrounding particles can be made arbitrarily 
small. This same argument can be used when the non-hydrodynamic forces are only 
bebween particles. 

Although this can be proven rigorously, there is also a simple physical explanation. 
As far as the particle at the centre of the periodic cell is concerned, particles outside 
this volume appear, not as discrete particles, but as a continuous distribution of force 
dipoles whose dipole strength depends on the bulk rate of strain E. This uniform 
distribution of dipoles gives zero contribution to the translational-rotational velocity 
of the central particle. The principal errors come in representing the discrete 
distribution as a continuous one and in assuming that the dipole strength of the 
continuous distribution is just its bulk-average value. The latter error is at  most 
O(R-2 ), and the former depends on precisely how fast the discrete distribution 
approaches the continuous one. Our simulations indicate that this approach is 
sufficiently fast for the above error estimate to be valid. Note, however, that the 
particles outside the cell do contribute to the central particle's stresslet and hence 
to the bulk stress, as we now discuss. 

The bulk rheological properties of the suspension are determined from the average 
stress tensor (Batchelor 1970). In  the presence of interparticle forces there are two 
contributions to the bulk stress: the mechanical or contact stress transmitted by the 
fluid, and the 'elastic ' stresses due to the interparticle forces themselves. The general 
form for both types of stresses can be found in Batchelor ( 1  977). The average or bulk 
stress can be written as 

(7) 

Here (u) is the average stress, I.T. stands for an isotropic term of no interest, N is 
the number of particles in the averaging volume V ,  and (SH) and (Sp) are the 
particle contributions to the contact and elastic stresses respectively. 

N 
(u) = I .T.+ZT,S+~ {(SH)+(Sp)}. 

The contact or hydrodynamic average particle stress (S") is given by 

l N  l N  

Na=, Nu-, 
(l-$)(SH)=- x s"=- x {G"*U*-M":E). (8) 

The summation is over all particles in the averaging volume, S" is the stresslet of 
particle a, which from linearity can be expressed in terms of all the particles' velocities 
and the bulk rate of strain through G" and M". G" and Mu are configuration-dependent 
and given explicitly in Jeffrey (1984 personal communication) and Kim & Mifflin 
(1985). (In these works G" is separated into translational and rotational parts.) The 
reciprocal theorem relates many of the elements of G" to 4. Again G" and M" are 
constructed by a pairwise superposition of the exact two-sphere results. 
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The factor 1-6, where 9 is the volume fraction, represents the effect of all the 
particles outside the averaging volume on the particle stress. This is the effect referred 
to above in the discussion of O’Brien’s work and periodic boundary conditions. In  
the dilute limit when the spherical particles are isolated, Sa = ~ n ~ , d E ,  and (SH) 
from (8) gives a bulk stress in (7) 

-(SH) N = - E X  59 59E, 
V 1-9 (9) 

which is just Einstein’s result (1). Keeping the next term in expanding the 
denominator of (9) gives the 592E ‘kinematical’ correction of Batchelor & Green 
(19723) (cf. their equation (4.2) and the discussion that follows). The expression (8) 
for the particle stress is essentially equation (3.15) of O’Brien (or his later (4.3)), which 
he derived for the effective thermal conductivity, applied to the bulk stress. The 
derivation follows exactly the procedure used by O’Brien. 

The elastic contribution to the particle stress (Sp) can be written as (Batchelor 
1977) 

(10) 
l N  (Sp) =-- C C rap Fap, 
N a=2 /?<a 

where rap is the centre-centre separation of particles a and /3, and FaF is their pairwise 
interparticle force. The addition of the pairwise forces Fafl gives the non-hydrodynamic 
force Fp in the evolution equation (4). 

Equation (7), (8) and (10) complete the definition of the bulk stress. The only 
assumptions made, in addition to the restrictions on the PQclet and Reynolds 
numbers, are that the suspension is statistically homogeneous and that there are no 
body couples so that the bulk stress is symmetric. Body couples can readily be 
included if one wishes to investigate antisymmetric stresses of the type found in 
magnetic fluids. Even though the interparticle forces investigated here are of 
electrostatic origin, no account is taken of the stresses due to the deformation of the 
double layers themselves, the so-called primary electroviscous effect (Russel 1978). 
The double layers considered here are very thin and this contribution is small. 

Since Ga, Ma and Fa/? are configuration-dependent, (7) determines the instantaneous 
bulk stress. The bulk rate of strain E and vorticity 0, while constant in space, can 
be arbitrary functions of time, and thus (7) allows the investigation of dynamic 
rheological properties as might be measured in an oscillatory shear experiment. The 
simulations to be discussed here are all steady, and (7) is averaged in time to give 
the time-average bulk stress. 

The above considerations for Stokesian dynamics and the definition of the bulk 
stress are true for any homogeneous suspension. Before closing this section, we apply 
these general results to our monolayer suspensions. Since all particles are constrained 
to lie in the (2, y)-plane as illustrated in figure 1, the number of degrees of freedom 
for each sphere is reduced from 6 to 3, with an 8-fold saving in computation time. 
The averaging volume V is now the volume of the monolayer V = ZaA, where a is 
the sphere radius and A is the area of the periodic cell. Rather than a volume fraction, 
we now have an areal fraction = xa2N/A,  where N is now the number of particles 
in the area A. 

Using a monolayer suspension has several noticeable effects on the bulk stress. The 
stress components (a,,) and (a,,) are zero because of the two-dimensional nature 
of the motion. The coefficient for the Einstein limit of non-interacting particles is wA 
rather than ~, i.e. (9) simply gives !&hA E. This can also be viewed as # A  = v. Also 



The rheology of suspensions in shear flow 113 

the contribution #(SH) coming from the particles outside the averaging volume is 
not present. The reason for this can be explained in two ways: (1)  the volume fraction 
in a three-dimensional sense of the monolayer is zero, and ( 2 )  defining the bulk stress 
as an areal average rather than a volume average will show that, since all particles 
lie in the same plane, adding contributions from far particles is-now a convergent 
process. The contribution from far particles to the stresslet of the central particle a 
decays as rd3, but the number of particles only grows as r2, so the summation is 
convergent. 

Theeffectiveviscosity ofthesuspensionisdefined astheratioofthe (z, y)-component 
of the average stress to the shear rate: 

The normal-stress 
coefficients !Pl and 

differences define the primary and secondary normal-stress 
!Pz common in the polymer-rheology literature : 

(%z)-(gyy) = -?zpl) (12) 

<fl,,)-(a,,> = -?;"2. (13) 

Care must be exercised in using the expression G". U*- Ma:€ for the particle 
stresslet in (8), because each of the two terms is singular as two particles approach 
one another, but their difference is not. That is, when two particles touch, their 
stresslets remain finite. I n  order to avoid possible numerical round-off error (SH) 
can be rearranged and rewritten as a sum over pairs of particles as in (10). Not only 
is this formulation more accurate numerically, it also isolates contributions to the 
effective viscosity that come from the relative velocities of two particles and from 
the shear rate. We shall see below that this rearrangement offers considerable insight 
into the mechanisms causing the suspension viscosity. Making use of the'known, 
exact, two-sphere expressions for G" and M" (Jeffrey 1984 personal communication; 
Kim t Mifflin 1985), and after considerable tedious algebra, the effective viscosity 
(1 1) can be written as 

Y 

In (14) cap is the angle between particles a and /3 measured relative to the x-axis 
with particle a at the origin (cf. inset in figure 4). AU:I is the actual (i.e. the 
contribution from the shear flow has not been subtracted off as in U*) relative radial 
(along the line of centres) velocity of spheres a and /3 made non-dimensional with a?;. 
AU;' is their actual tangential relative velocity, and G?; and 52f are the actual 
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rotational velocities, which only have a z-component. The functions Xg, XF2 etc. 
are non-dimensional functions of the scalar centrecentre separation Pap, which 
has been non-dimensionalized by the sphere radius a. The notation and the non- 
dimensionalizations are those of JeffFy (1984 personal communication) and Kim & 
Mifflin (1985). The superscript * on YEl2 is to indicate that the self-stresslet (i.e. for 
isolated pariicles) has been removed, giving rise to the term. In the interparticle- 
forcg term F:D is the radial force exerted by sphere /? on a (which is equal and opposite 
to I”?) non-dimensionalized by its amplitude 1 F, I. f*  = Sxqa?/ I F, I is the non- 
dimensional shear rate. If there were only two particles in suspension, the relative 
velocities could be expressed in terms of the rate of strain by the mobilities, and (14) 
would reduce to the two-particle stresslet of Batchelor & Green (1972b). 

In (14) we can identify five separate contributions to the effective viscosity: (1) 
the radial, (2) the tangential and (3) the rotational velocity terms, (4) the term in 
square brackets, which comes directly from the bulk shear flow, and ( 5 )  the 
interparticle force term. The angular dependence is symmetric about Oa8 = $, 
indicating that as much energy is dissipated bringing two particles together (OaD > in)  
as in pulling them apart (8, < in). All the microstructural information on the spatial 
and temporal distribution of particles found from solving the evolution equation (4) 
is present as the sum over particle pairs. As ’)i*+co the shear forces dominate the 
interparticle forces, both in (14) and in (4), and the viscosity depends only on the 
microstructure, which in turn depends only on the volume fraction. 

In this formulation the contributions ,to the-stress from particles a and /3 are no 
longer singular. Although the coefficient Xg - Xf2 of the radial-velocity term behaves 
as 5-l as 5 = Pafl-2+0, the relative radial velocity A U j  decreases proportion- 
ally with 5. For two isolated spheres Batchelor & Green ( 1 9 7 2 ~ )  found that 
AUP - -4.0775 as 5+0, and for all the densities we have simulated we find the same 
dependence on 5, but with a coefficient that is volume-fraction-dependent. It is this 
coefficient that has a scaling law of the form given by (3), as we discuss below. The 
Y-coefficients in the tangential and rotational velocity terms are logarithmically 
singular as E+O, but their combination in line 2 of (14) is not. Similarly, the 
bracketed term in (14) coming from the shear flow is O( 1).  Depending on the nature 
of the interparticle force Ffp, this term may appear to be singular as 5+0, but 
when combined with the radial-velocity term and account taken of the resulting 
microstructure it results in a finite particle stress. 

Analogous expressions can be written for the normal-stress coefficients Yl and Y2, 
but we shall not present the rather lengthy formulae here, as they contain little new 
information. As in (14), the two-particle stresslets are non-singular as 530 .  One 
important difference, however, is that Yl and Y2 are antisymmetric about i3,, = in. 
This implies, as first noticed by Batchelor t Green (1972b), that normal-stress 
differences arise only when the distribution of particles is not symmetric in the plane 
of shear. Not surprisingly, in our simulations non-symmetric distributions, and hence 
normal-stress differences, occur only in the presence of interparticle forces. 

- 1  

3. Results 
The rheological properties were determined for two types of suspensions: with and 

without interparticle forces. In  both systems 25 particles were used, as this number 
yields affordable computation times and still contains enough particles to include all 
second-nearest neighbours. (For hexagonal close packing in a plane a central particle 
has 6 nearest and 12 next-nearest neighbours.) In  our earlier work we also showed 
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that the pair-distribution function determined with 25 particles is in statistical 
agreement with that found with 100 particles. The simulations all started with the 
particles located at random in the periodic cell, and were integrated in time until a 
stationary state was reached. The stationarity was determined by monitoring the 
average of the square of the x- and y-components of the particle velocities relative 
to the bulk shear flow. With a normal dimensionless time step of 4 x stationarity 
was reached in approximately 5000 time steps, and the calculations were generally 
carried out to a total of 20000 time steps. The pair-distribution functionsg(r) reported 
below and the bulk stress were averaged in time over the last 15000 time steps. To 
determine the statistical errors, sample simulations under the same conditions of areal 
fraction and interparticle force were run starting from different initial conditions and 
for a total of 60000 time steps. We report here simulation results for areal fractions 
up to 0.5. More-dense systems begin to become expensive, as the time step must be 
reduced to accurately follow the particle trajectories. All calculations were performed 
in double precision on an IBM 3033 and/or a Cray 1. 

3.1. Pure hydrodymrnics 
In  the absence of interparticle forces the bulk stress is a function only of the volume 
fraction; the shear rate 3 simply sets the timescale. With our simulations we naturally 
fmd that the suspension viscosity increases with increasing volume fraction, but, in 
order to understand the mechanisms that cause this increase and to make com- 
prehensible the wealth of statistical information available to us, we shall discuss the 
effective viscosity primarily in terms of two bodies. Comparison will also be made 
with the dilute theories and with the work of Beenakker (1984). 

An examination of (14) will reveal that there are two basic factors that determine 
the viscosity in dense suspensions: (1) the distribution of particle pairs, i.e. the 
microstructure, and (2) the fact that the relative velocities of two particles are not 
the same as they would be if there were only two particles in suspension. In  figure 2 
we compare the relative viscosities determined by simulation (solid circles) with 
the viscosities found from the two-sphere O(qP ) analysis of Batchelor & Green (19723) 
under two conditions. In the first (open circles), the coefficient K in (2) is calculated 
assuming that the distribution of particles outside the excluded volume r < 2 is 
uniform and equal to the bulk density. In the second (open squares), we use the same 
two-sphere analysis, but with the actual distribution of particles found in our 
simulations. 

We first note that the simulation viscosities are uniformly larger than the two-sphere 
ones, although at low densities, = 0.1, all three calculations agree as one should 
expect. What is interesting, however, is that the two-sphere viscosity with the correct 
microstructure is lower than that found by assuming a uniform density. This 
behaviour can be understood with the help of figures 3-5. 

In figure 3 we present the cumulative contribution to the two-sphere viscosity as 
a function of separation r of the two spheres at an areal fraction of 0.4. With the 
uniform density there is a slow monotonic increase in the viscosity as the area, and 
hence the number of particles, increases. The viscosity reaches a limit because the 
stresslet eventually decays aa @. With microstructure the two-sphere viscosity rises 
rapidly, followed by a very slow monotonic increase, eventually reaching a lower 
value than without structure. Examination of the pair-distribution function will 
explain this behaviour. 

The pair-distribution function g(r, 0) is shown in figures 4 and 5, displaying separ- 
ately its angular, gA,(0), and radial, <g(r))@, dependence. Shown in figure 4 for two 
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FIGURE 2. Comparison of the suspension viscosity obtained by simulation (0)  with the two-sphere 
O ( Y )  viscosity calculated from the analysis of Batchelor & Green (1972b) aa a function of areal 
fraction #A : 0 assumes a uniform density of particles, and 0 uses the pair-distribution function 
found by simulation. 

areal fractions, = 0.1 and 0.4, is the angular dependence of the pair-distribution 
function in the Ar range 2 < T < 2.05, which includes the first-nearest-neighbour 
peak. The angular structure is relatively weak, but yet statistically significant, 
and is symmetric about 6 = in, i.e. there are no normal-stress differences. A t  low 
densities, where most interactions are between only two particles, the angular 
distribution has its maxima at 8 = 0 and A, and passes through a minimum at 8 = in. 
This is consistent with what is known for two isolated spheres : a two-sphere dumbbell 
spends more time aligned with the shear (8 = 0 and x )  than at right-angles to it 
(8 = in), and thus the probability density for pairs should reflect this. Some recent 
experiments of Husband & Gadala-Marie (lSSa), where the angular dependence in 
the plane of shear of the pair-distribution function in dilute three-dimensional 
suspensions (q5 < 0.05) was measured, are in good agreement with our results for 
#A = 0.1. At higher densities the angular dependence is reversed, with the maximum 
occurring at 8 = in. Here, as the dumbbell of two spheres tries to rotate in the shear 
flow, its movement is hindered by the other particles, so it actually spends more time 
perpendicular to the flow direction than aligned with it. The weak angular structure 
has little effect, however, on the suspension viscosity. 

= 0.4 shown 
in figure 5 is a simple &average of g(r ,  8). (g(r)>o is strongly peaked at the minimum 
separation distance r = 2 (see inset), drops rapidly to below the bulk density level 
of 1, and then peaks again at the second-nearest-neighbour position before approaching 

The radial dependence of the pair-distribution function (g(r ) )e  at 



The rheology of suspensions in shear flow 

0.8 

0.6 

117 

I I I 
Two-sphere viscosity, +A =0.4 

- pair distribution 
- - uniform density 

c - 
/ 

/ 
/ 

/ . 
0 - - 0 

/ 
0 

0 
0 

/ 

- 
/ 

/ 
/ 

/ 
0.2 - / - 

/ 
1 

I 
0 I I I 
2.0 2.5 3.0 3.5 

Pair-distribution function: 8-dependence 

+ A =  (0.1 -€I-- 

180" 135" 9oo 450 0" 
8 

FIQURE 4. The 0-dependence of the pair-distribution function &(8) in the AT range 2 d r Q 2.05 at 
two areal fractions = 0.1 and 0.4. The inset shows the angle 8 in relation to the two spheres 
and the shear flow shown in figure 1. The symmetry of gAr(8) about 8 = 90" implies that there are 
no normal-stress differences with purely hydrodynamic interactions. 
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FIUURE 5. The radial dependence of the pair-distribution function (g( r)),,, which is asimple @-average, 
at $A = 0.4. The solid curve -0- is the pure hydrodynamic distribution, and the dashed curve 
-A- is the distribution in the presence of repulsive interparticle forces at -+* = 0.2 and r = 227. 

the bulk. The form of (g(r ) )@ is quite different from the hard-sphere equilibrium 
distribution commonly employed in statistical mechanics. Although it is difficult to 
be precise numerically, rather than reaching a finite value at contact as for hard 
spheres, (g ( r ) ) e  appears to be singular (but integrable) as r + 2 ,  reminiscent of the 
two-sphere distribution found by Batchelor & Green (1972b) for extensional flow 
where g(r )  - ,5-0.7*1 (In 5 - ' ) - O . . " @  as t + O .  Also, the width of the first peak, defined 
as the distance at half-maximum, is very narrow, O( 

With the help of figure 5 we can now explain why the two-sphere viscosity with 
structure is less than without. With structure the cumulative two-sphere viscosity 
in figure 3 rises rapidly in response to the first-nearest-neighbour peak (recall that 
the stresslet at  contact is finite), but, once the distribution drops below the uniform 
level at r = 2.2, the contribution to the viscosity from this region is less than in the 
absence of structure, because there are fewer particles ; hence the viscosity increases 
less rapidly with r .  By the time the second-nearest-neighbour peak is reached, the 

). 



The rheology of suspensions in shear flow 119 

Relative radial velocity 
# A  = 0.4 

FIGURE 6. The relative radial velocity V, of two spheres as a function of separation r at an areal 
fraction of 0.4. V, is the ratio of the actual relative radial velocity A U j  of two spheres in suspension 
to the relative velocity AUF of two isolated spheres determined by Batchelor & Green (1972a). 
As ~ + 2 ,  5+0, AUF N -4.0775. 

contribution from each particle is so small that this increase in the local density of 
particles has no effect on the viscosity. The important conclusion to be reached is 
that the increase in the viscosity with density is not due to the changing microstructure 
as represented by the pair-distribution function. The microstructure actually results 
in a lowering of the viscosity. 

The increase in the viscosity then must come from the fact that the relative 
velocities of two particles in suspension differ from their isolated two-sphere values. 
Perhaps not surprisingly, it  is the relative radial velocity AUfB in (14) that is most 
important. In figure 6 we present the ratio of the relative radial velocity found in 
simulation to the two-sphere result of Batchelor & Green ( 1 9 7 2 ~ )  as a function of 
the centrecentre separation at = 0.4, i.e. V,= AU:P/AUF. Recall that the 
relative radial velocity of Batchelor & Green vanishes as r + 2 ;  AUF - -4.0775 as 
[ + O .  V, also follows the structure closely, decreasing from a maximum of just over 
4 to near 1 as the structure relaxes. The motion of two widely separated spheres must 
of course be uncorrelated; and at large separations V, approaches unity as 
AUF - I E * r l ,  the independent motion of two spheres. 

This large increase in the relative radial velocity, coupled with ihe high local 
density at r k: 2,  is responsible for the increase in the suspension viscosity above the 
two-sphere value. The magnitude of V, at r = 2 increases with increasing areal 
fraction as shown in table 1 ,  and causes the increase in the viscosity with increasing 
density. It should be noted that, although V, is approximately 4 at r = 2 for = 0.4, 
the actual relative radial velocity of two particles vanishes on touching, 
AU:I - - 16.76 as E+O;  it  is only the coefficient of 5 that changes. 

The increase in V, as r+2 is as if the two spheres find themselves in a shear flow 
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6.4 ye (= V,  at = 2, .ie/[1-(6A/#m)tl-1 
0.10 1.57 0.10 1.01 f 0.06 
0.25 2.14*0.10 0.932 *0.04 
0.40 4.02 f0.15 1.15 f0.04 
0.50 5.42 f0.20 1.10 f0.04 

TABLE 1.  The effective shear rate ye defined as V,  at r = 2 as a function of areal fraction #A.  Note 
that, although V, is sharply peaked at r = 2, it reaches a constant asymptote for 6 < lo-*. Also 
shown is the ratio of ye to [l- (g5A/q4,,)4]-1, indicating that ye scales as [l - (#A/&)i]-l as #A -+q$m. 

with an 'effective' shear rate ye ,  which is larger than the actual shear rate. This 
increase in ye  can be explained by particle clustering. The hydrodynamic lubrication 
forces cause groups of close particles to act as a single larger particle, A force exerted 
on one particle at the end of a cluster is 'transmitted', almost as if the particles were 
in actual contact, to the other end of the cluster via the lubrication forces and the 
connectivity of the structure. We can imagine a cluster of Characteristic length Zc, 
the duster size, acting as a rod in the shear flow. In a linear shear flow the stress 
in the centre of a rod is proportional to its length, and thus two particles finding 
themselves in the cluster centre experience a shear rate that is O(Zc- 1) times larger 
than if they were isolated. Particles near the end of a cluster, of course, experience 
a smaller stress, and hence a lower ye.  The ye reported in table 1 are averages over 
all particle pairs and thus over all pairs within a cluster and over all cluster sizes. 

In figure 7 a typical (selected at random) particle configuration at +A = 0.4 is 
shown. A group of particles in close contact have been shaded to show the presence 
of a cluster of 9 particles with characteristic size 1, = 6. This cluster is in a region 
of maximum compression along the 135" line of the shear flow. Both V, and ye are 
independent of 8, indicating that, statistically, the cluster is long-lived and rotates 
en m 8 s e  with the shear flow, The increase in the suspension viscosity with con- 
centration, which results directly from the relative radial velocity, i,e. from ye, is the 
result of the formation of clusters that effectively span large regions of the flow. 

Although for all the densities we have simulated we fkd  that the relative radial 
velocity of two particles vanishes linearly with f as the particle surfaces approach 
one another, the increase in ye, the coefficient of E,  raises the question as to its limiting 
behaviour at high concentrations. In particular, if 7" is proportional to 6-l as 
#A +q$m, where q5, is some maximum concentration, AUfB will become finite on 
touohing, and the suspension viscosity will become infinite as discussed in 8 1. In a 
monolayer at high concentrations a simple geometric construction shows that f scales 
as 1 - (cf. (3), where the exponent would be f for 3 dimensions), and the 
maximum areal fraction that can still flow is given by a simple cubic arrangement; 
9, = in = 0.785. The maximum density 4, = n/B 1/3 x 0.907 for hexagonal pack- 
ing cannot flow in the homogeneous manner considered in this paper. 

Shown in table 1 is the ratio of ye to [l- ($A/$,):]-1. The simulation results do 
indeed seem to indicate that Ye, and hence the viscosity, scale as [1-($A/q5,)f]-1 
as #A+#m. The scaling law leads to the conclusion that the suspension viscosity 
becomes infinite because of the formation of an infinite cluster, with $, as a 
percolation-like threshold. The scaling law for the cluster size is the same as for ye,  
[l - (q5A/q5m)i]-1. This cluster formation is the result of the lubrication forces, and 
thus the same behaviour will occur in three dimensions with a different percolation-like 
threshold 4, and, using the same simple geometric construction, a + in place oft .  
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n t Y  

FIGURE 7. A typical particle configuration selected at a random instant in time, The frmtion 
is 0.4 and the particles interact purely hydrodynamioally. The 9 shaded particles show the preaenos 
of a cluster of size 1, z 6 located in a region of maximum compression along the 136' line of the 
shear flow. The increase in cluster size with areal fraction is responsible for the increase in the 
suspension viscosity. 

The singular viscosity behaviour is the same as that found by Frankel t Acrivos 
(1967) from a static lubrication analysis. The origin of the inilnita force that is needed 
in their analysis to push surfaces together at finite velocity comes from the formation 
of an infinite cluster. Unlike the spatially periodic case, where particles only spend 
an O(k) amount of time at close contact and the viscosity is 0(1), the infinite cluster 
has an O(1) lifetime. Bouillot et al. (ISSZ), who conducted sheared monolayer 
experiments, measured cluster sizes as a function of concentration. Since particles 
never actually touch one another, it  is difficult to give a precise definition of what 
constitutes a cluster, i.e. how close must two spheres be to belong to the same cluster? 
Bouillot et al. used the limitation of experimental measurement as their definition, 
giving from their photographic technique a minimum separation of 0.1 radii. Perhaps 
a better definition would be the half-width of the V, peak near r = 2, or some similar 
quantity. Nevertheless, their measurements agree remarkably well with the scaling 
law I ,  - [l- (q5A/&,)4]-1 (cf. their figure 3). More detailed meaasurements of sus- 
pension microstructure are needed, however, to verify this scaling law. 

While the simulation results seem to indicate the formation of an infinite cluster 
and a singular viscosity, some comments and some caution are in order. The density 
range we have investigated is limited, and it is possible that a different behaviour 
will emerge at higher densities. All that can be concluded for certain is that the 
viscosity increases because of ye, and that over the range of densities investigated 
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ye has a singular scaling law. Once a cluster has grown to the size of the periodic box, 
its behaviour will be influenced by the periodicity and may not be representative of 
an infinite suspension. 

We have called 4, a percolation-like threshold because of the obvious analogy with 
percolation phenomena. Om, however, should not be confused with the classic per- 
colation threshold of, say, a conductivity problem. There is a distinct directionality 
associated with the shear flow, and the range of interactions is much longer in a 
suspension. Furthermore, although 4, and the !j in the scaling law seem to be given 
accurately by a simple cubic arrangement, it is quite possible that the true percolation 
threshold lies slightly below in. Also, the geometric arrangements that lead to the 
f may not be appropriate if the cluster formation has a fractal dimensionality. Finally, 
it is also possible that ye could scale more strongly than E-’ with cluster size, resulting 
in a viscosity that is more singular than that given by (3). Only by simulation at higher 
densities and with larger systems can these interesting questions be resolved. 

From an experimental point of view, the formation of large clusters means that 
boundary effects will become important. In a typical Couette device one minimizes 
wall effects by having the gap-to-particle size as large as possible. With the formation 
of clusters, one must have the gap-to-cluster size large in order to minimize wall effects, 
as the cluster size is now the appropriate microstructural lengthscale. As q5 + q5m the 
cluster becomes infinite, and wall effects can never be neglected. At  high q5 measured 
properties are no longer ‘material ’ properties, but functions of the experimental 
apparatus as well. Finally, since particles spend a large time in very close contact, 
with separation distances O( ), surface roughness and non-hydrodynamic forces 
may become important, if not dominant, at  high concentration. 

We now turn to a comparison of our simulation viscosities with experiment. 
Comparison will be made both with the monolayer experiments of Belzons et al. (1981) 
and with three-dimensional suspensions. In  order to compare two- and three- 
dimensional results, the areal and volume fractions will be normalized by the 
maximum flowing fractions. In two dimensions q5g = in z 0.785, a simple cubic 
arrangement. In three dimensions the maximum flow fraction is not known, and we 
have chosen qjg = 0.605, which corresponds to hexagonal packing perpendicular to 
the plane of shear, the (z, 2)-plane in figure 1, and simple cubic packing in the plane 
of shear, the (z, y)-plane. This is surely a reasonable value, and other packing 
arrangements do not give widely different maximum concentrations. 

In figure 8 we compare our simulation viscosities (solid circles) with experiment 
(0, 0, A) and with the theoretical predictions of Beenakker (1984) ( + ). The symbol 
size is an indication of the scatter in the experimental data and the statistical 
uncertainty in the simulations. Let us first examine the monolayer results of Belzons 
et al., which are the open triangles. 

In the experiments of Belzons et al. a layer of oil of depth 2a was loaded with spheres 
of radii a and floated on top of water. Above the oil layer was air. This system was 
placed in a large Couette device, sheared, and the resulting torque measured in the 
usual fashion. The system is close to our model suspensions, except that in simulation 
the fluid above and below the plane of particles is the same as in the monolayer. Our 
simulation viscosities are uniformly larger than the experimental values, although 
agreement is good at low areal fractions. 

There are several possible reasons for these differences. (1) The air and water layers 
definitely have some effect on the particle interactions and hence the viscosity, but 
the details of this effect are not known. (2) In the simulation all particles are 
constrained to lie in the plane of shear, while experimentally only surface tension 
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FIQURE 8. Comparison of the simulation viscosities (0) with experiment (0, A) and with the 
theoretical predictions of Beenakker (1984) (+). All densities have been normalized by the 
maximum flowing fraction, #g = 0.785 and q5g = 0.605, to compare 2- and 3-dimensional results. 
The symbol size is an indication of the experimental error and the statistical unoertainty in the 
simulations. 

keeps the particles in the oil layer. A t  high concentrations a particle can follow a path 
of lower resistance by popping up slightly out of the plane of shear. This extra freedom 
will reduce close contacts and thus lower the viscosity. Finally, (3) it was observed 
experimentally that above an areal fraction of 0.4 the particles started to form a 
'plug', and the shear rate was no longer uniform throughout the gap. At these high 
concentrations wall effects are evidently important as the cluster size becomes 
comparable to the gap width. Indeed, Belzons et ab. performed experiments at 
$A = 0.85, well above the maximum flowing fraction, and noted that the suspension 
moved as a block with a thin shear layer adjacent to the inner cylinder. This 
behaviour is radically Merent  from the homogeneous shear flow treated in our 
simulations. Considering all these factors, the agreement is still quite reasonable 
(within a factor of 2 or 3), and should be viewed as an indication that the 
Stokesian-dynamics method contains the essential physics and is capable of quant- 
itative predictions. 

The comparison with the three-dimensional experimental results of Gadala-Maria 
(1979) (0) and PZitzold (1980) (0) is remarkable. We have selected these data because 
they are among the most recent and because great care has been taken to minimize 
non-hydrodynamic effects. Although the agreement is excellent, one should note that 
the ratio of the normalization densities, $$ to q5g, acts as an adjustable parameter. 
Different values of $2 will shift the experimental points laterally, but not significantly 
for reasonable choices of $2. Although the 2-dimensional and 3-dimensional systems 

6 P L M  1% 
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are different and one should not necessarily expect such good agreement, the idea 
of cluster formation makes this comparison reasonable. If e measures the distance 
from #m, e = I-#/#,, then in both 2 and 3 dimensions qr scales as e-l .  What is 
surprising is that the coefficients are close. We view this agreement as another 
indication that the approximation of pairwise additivity of forces made in the 
Stokesian-dynamics method has not lost the proper physics. Indeed, the cluster 
formation, which is responsible for the increase in the viscosity, results from the 
lubrication forces and these have been modelled correctly in our method. 

Lastly, we turn to a discussion of Beenakker’s theoretical predictions, the + s  in 
figure 8. As mentioned in J 1, Beenakker’s treatment of the hydrodynamic interactions 
is in principle exact, although it is not possible to sum completely all interactions. 
His treatment of dense systems is in the form of a density-fluctuation-correlation 
expansion about a homogeneous mean state. No calculations of the microstructure 
are attempted; the Percus-Yevich hard-sphere distribution is used to generate the 
density fluctuations. Beenakker’s predictions are uniformly below the experimental 
data, but agree well up to volume fractions # x 0.25. The trend at  high concentrations 
is, however, considerably below that of the experiments. While an excellent ad- 
vancement in suspension theory, Beenakker’s predictions apparently fall short for 
two reasons : ( I  ) the lubrication forces are not completely accounted for because they 
can only be obtained by summing all interactions, and (2) the starting state for the 
density-fluctuation-correlation expansion does not contain the notion of a percolating 
c1uster.t Both of these are elements we have found to be essential at  high 
concentrations. 

3.2. Interparticle forces 

The addition of non-hydrodynamic forces changes both the suspension microstructure 
and its rheology. To understand how these changes come about, we have investigated 
a suspension with one type of interparticle force. In addition to the hydrodynamic 
forces discussed earlier, particles interact through pairwise repulsive DLVO-type 
colloidal forces (Vervey & Overbeek 1948; Takamura et al. 1981) of the form 

Here FaB is, as before, the force on particle a due to particle /I, 6 is the separation 
between particle surfaces, 7 = Ka, and K - ~  is the Debye length. The amplitude F, acts 
along the line of centres, is repulsive and is given in magnitude by 

IF, I =  RE+', 

where e is the electrical permittivity of the fluid and + is the surface potential when 
l+co. The form of (15) assumes that the particles move relative to one another a t  
constant surface charge. 

The important characteristics of this repulsive force are that it behaves as 5-l as 
E+O, just like the lubrication forces, and that it decays to 0(10-* I F, 17) when 
6 = O(4.57-1 ). I F,, I sets the magnitude of the force and 7 sets its range in space. Values 
for + and K were taken from Takamura et al. (1981). For polystyrene latex spheres 
of 2 pm radius in a 50 % glycerol-in-water mixture containing M-KCl they report + x 4 x V and K - ~  x 88 A, giving 7 x 227. In  the simulations reported here the 

t Owing to the complexity of Beenakker’s analysis, it is difficult to pinpoint the significant 
approximations, but we feel the abovementioned two are important. 
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areal fraction and 7 were fixed a t  0.4 and 227 respectively, and the non-dimensional 
shear rate ?* = 67t7a2?3/ 1 Fo 1 was varied. 

As mentioned in 5 1, interparticle forces affect the suspension viscosity in two ways : 
(1) there is the direct 'elastic' contribution to the bulk stress given by (lo), and (2) 
there is an indirect effect through the changing microstructure. They may also create 
normal-stress differences if the microstructure is not symmetric about 8 = in in the 
plane of shear. In  figures 9 and 10 we present the primary normal-stress coefficient 
Y1 and viscosity qr over the shear-rate range lo-' < p* < lo4. 

The normal-stress differences, of which Yl is representative, result from the angular 
structure created by the interparticle forces. As shown in our earlier work (cf. figures 
3 and 4 of Bossis & Brady 1984), there is a pronounced angular structure with a 
maximum at 8 x 135" where the shear and repulsive forces balance, and a minimum 
at 8 x 45' where the shear and repulsive forces act together to separate particles. 
As seen in figure 9 the normal-stress differences increase with increasing concentration 
and decrease linearly with p*-' as ?*+GO. At very low densities, $A = 0.1, the 
normal-stress differences are small, even though there is still a significant angular 
structure (cf. figure 5 of Bossis & Brady 1984). For spherical particles normal-stress 
differences are inherently two-body effects and thus O($2). The linear dependence of 
Yl on y*-l is in agreement with the experimentally measured normal-stress 
differences of Gadala-Maria (1979). Neither Gadala-Maria nor we observed a tendency 
for Yl to approach a constant as ?* + 0, as expected for viscoelastic materials. This 
is probably due to the fact that a ?* = O(10-') is still large. In the limit j * + O  only 
the repulsive forces remain, and the suspension should have a regime of elastic 
response near ?* = 0. It should be noted, however, that for small ?* the PBclet number 
becomes small and Brownian motion must be considered. 

Figure 10 shows the shear-rate dependence of the effective viscosity. The suspension 
is shear-thickening, but the viscosity calculated using the two-sphere analysis of 
Batchelor & Green (1972b) including both the interparticle-force term (Sp) and the 
microstructure is shear-thinning. There are essentially thrcc effects taking place in 
the suspension: (1) there is a shear-thinning effect due to the fact that the 'elastic' 
stresses are proportional to j*-l  (cf. the last term in (15)); (2) the changing 
pair-distribution function has some very subtle effects that can be both shear- 
thickening and shear-thinning; and (3) the formation of particle clusters as ?*+GO 
increases the viscosity. 

Shown in figure 5 is the radial dependence of the pair distribution function (g(r))* 
at ?* = 0.2. Recall that this is a $-average. Unlike the distribution function without 
forces, the first-nearest-neighbour peak is sharply peaked a t  r x 2.027, where the 
shear and repulsive forces balance at 8 x 135". As the shear rate increases, the first 
peak increases in height, narrows and is pushed towards r = 2. At ?* = lo4 the first 
peak has a height O(4 x los) and is centred at r x 2+ 3.5 x low5, i.e. 5 x 3.5 x 
The increase in the number of very close neighbours increases the viscosity as 
explained in 83.1, but, at the same time, the increased region of (g ( r ) )@ < 1 lowers 
the viscosity. Since the 'elastic' stresses always (for this particular force that behaves 
as 5-l) shear-thin, the two-sphere viscosity indicates that the net result of the 
changing pair-distribution function is to cause shear thinning. 

The shear-thickening behaviour of the simulations comes from the formation of 
clusters as ?*+a. The repulsive forces effectively break the connectivity of the 
clusters, especially on the downstream side 8 < in, and diminish their ability to 
transmit stress. At  ?* = 0.2, the Ye at the location of the first peak was only 
approximately 2, as compared with 4 in the absence of forces. Snapshots of the 
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FIQURE 9. The primary normal-stress coefficient Yl as a function of 3* for two areal fractions 
#A = 0.4 and 0.5. The range of the interparticle force was kept constant, 7 = 227. Yl decreases 
linearly with ?*-'. 
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RQURE 10. The shear-rate dependence of the suspension viscosity at #A = 0.4. The simulations show 
a shear-thickening behaviour due to the increased formation of clusters as y* +a. The two-sphere 
viscosities show a shear-thinning behaviour because they contain no information on cluster 
formation. 
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particle distribution, as in figure 7 ,  with forces (cf. figure 1 2  of Bossis & Brady 1984) 
show a much more homogeneous and open structure with smaller cluster sizes. Again 
clustering seems to play a very important role in the suspension viscosity. 

The shear-rate dependence of the effective viscosity and the arguments given here 
to  explain it are applicable for this particular interparticle force. It is not known 
whether other forces will give rise to the same qualitative behaviour, or will be 
fundamentally different. The subtle interplay of the microstructure, the interparticle 
forces, and the cluster formation makes general statements difficult. We hope that, 
as more information becomes available for other types of forces, a clearer picture will 
emerge. 

4. Conclusions 
We have shown how the general method of Stokesian dynamics can be used to 

compute macroscopic rheological properties of suspensions. For suspensions in which 
particles interact through purely hydrodynamic forces, it was shown that the increase 
in the suspension viscosity with increasing volume fraction can be interpreted as due 
to the formation of particle clusters. Microstructural effects embodied in the 
concentration dependence of the pair-distribution function were shown to result in 
a suspension viscosity that was lower than in the absence of structure. Over the 
concentration range investigated in the monolayer simulations, the cluster size I ,  was 
seen to scale as 1, - [l-  (#A/q5m)f]-1, where #, = +K. This scaling law predicts the 
formation of an infinite cluster at the percolation-like threshold #m, and predicts 
that the suspension viscosity becomes singular with the same scaling law. Three- 
dimensional suspensions are expected to have a similar scaling law, with a different 
percolation-like threshold. The cluster formation is a direct result of the hydrodynamic 
lubrication forces that keep particle surfaces from touching. The predicted suspension 
viscosities were shown to be in good agreement with experiment, indicating that the 
approximation of pairwise additivity of forces in the resistance matrix contains the 
essential physics. 

These stimulations are intended to model the behaviour of a homogeneously 
sheared suspension in regions far removed from any boundaries. As a result, there 
is a maximum volume fraction #, that can flow in a homogeneous manner. It is 
possible to shear suspensions at concentrations above #m, but then the average 
motion will not correspond to the homogeneous shear flow considered here. At these 
high densities it is likely that small regions of the suspension, perhaps adjacent to 
the boundaries, will shear rapidly, leaving the rest of the suspension immobile. 
Indeed, the idea of the formation of an infinite cluster as #+#, implies that 
boundary effects will dominate at the percolation-like threshold. Also, at high 
densities particle surfaces become arbitrarily close to one another, and non-hydro- 
dynamic forces and/or surface roughness will ultimately play a very important 
role in suspension behaviour. These observations may explain why the scatter in the 
experimental data is pronounced at high volume fractions, and why normal-stress 
differences and shear-rate-dependent behaviour are often observed. Normal-stress 
differences and rate-dependent viscosities cannot occur in a purely hydrodynamically 
interacting suspension. 

The DLVO-type repulsive interparticle forces investigated here were seen to be 
effective at reducing cluster formation and thus lowering the suspension viscosity. 
As a result, the suspension shear-thickens as the hydrodynamic forces gain importance 
and reform the clusters. The anisotropic local structure caused by the interparticle 
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forces gives rise to normal-stress differences. It is difficult, however, to make general 
statements about the precise role of interparticle forces on suspension rheology , 
because of the subtle interplay of the forces, the changing microstructure and the 
cluster formation. Further simulation studies with different types of forces are needed 
to clarify this area. 

We hope we have shown that the Stokesian-dynamics method is capable of 
quantitative predictions of macroscopic behaviour, as well as providing a thorough 
understanding of how the fundamental mechanisms operating on the microscale affect 
this behaviour. The generality of the method allows a variety of problems to be 
studied, and it can readily be extended t o  include boundary effects and Brownian 
motion, opening up an even broader class of suspension problems. 
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Recherche Scientifique under the ATP programme in macroscopic random materials 
and by a grant from Monsanto Company. Computer time was kindly provided by the 
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